Extremal Length and Removable Boundaries of Riemann Surfaces

نویسندگان

  • BURTON RODIN
  • Maurice Heins
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounded Outdegree and Extremal Length on Discrete Riemann Surfaces

Let T be a triangulation of a Riemann surface. We show that the 1-skeleton of T may be oriented so that there is a global bound on the outdegree of the vertices. Our application is to construct extremal metrics on triangulations formed from T by attaching new edges and vertices and subdividing its faces. Such refinements provide a mechanism of convergence of the discrete triangulation to the cl...

متن کامل

Generalizations of Picard's Theorem for Riemann Surfaces

Let D be a plane domain, E C D a compact set of capacity zero, and / a holomorphic mapping of D\E into a hyperbolic Riemann surface W . Then there is a Riemann surface W1 containing W such that f extends to a holomorphic mapping of D into W . The same conclusion holds if hyperbolicity is replaced by the assumption that the genus of W be at least two. Furthermore, there is quite a general class ...

متن کامل

2 8 N ov 2 00 3 On the number of extremal surfaces

Let X be a compact Riemann surface of genus ≥ 2 of constant negative curvature −1. An extremal disk is an embedded (resp. covering) disk of maximal (resp. minimal) radius. A surface containing an extremal disk is an extremal surface. This paper gives formulas enumerating extremal surfaces of genus ≥ 4 up to isometry. We show also that the isometry group of an extremal surface is always cyclic o...

متن کامل

Extremal Hermitian Metrics on Riemann Surfaces with Singularities

0. Introduction. It is a well-known consequence of the classical uniformization theorem that there is a metric with constant Gaussian curvature in each conformal class of any compact Riemann surface. It is natural to ask how to generalize this classical uniformization theory to compact surfaces with conical singularities and with nonempty boundary, or to find a “best metric” on such surfaces. H...

متن کامل

Extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of genus two Riemann surfaces

We study extremal properties of the determinant of the Laplacian in the Bergman metric on the moduli space of compact genus two Riemann surfaces. By a combination of analytical and numerical methods we identify four non-degenerate critical points of this function and compute the signature of the Hessian at these points. The curve with the maximal number of automorphisms (the Burnside curve) tur...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007